\qquad Newton's Laws

1-8. Complete Newton's Laws:
 at a \qquad unless

$$
2^{\text {nd }} \text { Law: } F=\text { na }
$$

9. Define inertia.

10. 1 Newton $=1 / 4$ pounds $0,224 \mathrm{l}$
11. 1 Kilogram $=\sum$ pounds $2,2 \mathrm{LLS}$
12. Newton is a unit of force, and kilogram is a unit of \qquad mass

The diagram below shows the path followed by a car. It also explains what is happening to the car's speed as the car is traveling. For each of the segments of the car's path, tell whether (by circling) the forces acting on the car are balanced or unbalanced.
$\left(\begin{array}{l}13 . \\ 14 . \\ 15 . \\ 16 . \\ 17\end{array}\right)$

18. Suppose the forces acting on a car are balanced. If this is true, there are only two things this car could be doing. What are they?

$$
\begin{aligned}
& \text { Sitting still constatopeod in a } \\
& \text { - moving at a }
\end{aligned}
$$

19. Suppose the forces acting on another car are unbalanced. In this case, there are three different things that the car could be doing. What are they?

$$
\begin{aligned}
& \text { Accelerating } \\
& \text { Pecelerating } \\
& \text { turning }
\end{aligned}
$$

20. A ball is sitting motionless on the ground. The ground is applying an upward force of 20 N to the ball. What do you know about the NET FORCE acting on the ball?
21. $F=m a$. If this is true...
a. What should happen to the acceleration of an object if you double the force that you are applying to it?
$F=m a$

$$
\begin{aligned}
& F=m a^{b} \\
& E=M a .
\end{aligned}
$$

Accelerate doubles
b. What should happen to the acceleration of an object if you apply the same force, but you double the object's mass?

$$
\text { Acceleration decreases by } / 2
$$

c. If you want accelerate something twice as fast, how much more force should you use?

$$
\sqrt{2}, n ?
$$

$$
\text { Vice } a<\text { metre }
$$

$$
F=m E C^{d}
$$

d. If you want an object to accelerate twice as fast when the same force is applied, what should you do to the object's mass?
Pass must decrease

The circles on the right represent objects with varying masses, volumes, and densities. The dots inside the objects represent identical pieces of "stuff." The rest of the object is empty space.

22. Which has the most mass?
23. Which object has the greatest volume? P
24. Which object weighs the LEAST?
25. Define "weight"

$$
\begin{aligned}
& \text { Define "weight" } \\
& \text { Fore of }
\end{aligned}
$$

26. A 1000 kg car accelerates at a rate of $6 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. What is the net force acting on the car?

$$
F=m a=1000 s\left(b \sim t^{2}\right)=[6000 \mathrm{~N})
$$

27. On planet Z , falling objects accelerate at a rate of $32 \mathrm{~m} / \mathrm{s}^{2}$. How much does a 90 kg man weigh on the planet

$$
F=90 \mathrm{~kg}\left(32 \mathrm{~m} \mathrm{~s}^{3}\right)=2880 \mathrm{~N}
$$

28. A 100 kg man is falling from the sky (on Earth). Use $\mathrm{F}=\mathrm{ma}$ to calculate the weightof the man in Newtons. Remember, weight is the force of gravity, and acceleration due to gravity $\approx 10 \mathrm{~m} / \mathrm{s}^{2}$.
$=10 \mathrm{~m} 5^{2}$

$$
F=100 \mathrm{~K}\left(10 \mathrm{~m} \mathrm{z}^{2}\right)=1000 \mathrm{~N}
$$

29. A woman is falling at terminal velocity. The force of air resistance pushing her upward is 500 N . How much does she weigh?

30. The diagram below shows a mousetrap-powered car during its acceleration and deceleration phases. Use arrows to show all of the forces acting on the car during those phases. Make sure that you include all of the individual forces, plus the net force.

- Label the arrows with the names of their forces.
- Make sure that your arrows are going in the right direction.

31. You cannot throw a feather with as much force as you can throw a desk. What could you do to prove this? Which of Newton's Laws do you need to use in your proof?

33-34. The diagram on the right depicts the flight of a lightweight ball that is dropped from a tall building. The point at which the ball reaches its terminal velocity is shown as a dotted line.
33. Circle-all that are true: Before the ball reaches terminal velocity... a. Weight > Air Resistance b. Air Resistance $>$ Weight
c. Air resistance = Weigh td. Net force is downward
e. Net force is upward
34. Circle all that are true: After the ball reaches terminal velocity... Before reaching
terminal velocity terminal velocity

-

- Moment of Reaching
a. Weight $>$ Air Resistance b. Air Resistance $>$ Weight c. Air resistance $=$ Weight d. Net force is downward
e. Net force is upward

35-36. For the bicycle and the SUV on the right, draw and label a vector representing the net force, Then tell whether the object is accelerating, decelerating, or moving at a constant speed.

67-38. Dill in the missing forces in the two diagrams on the right.

$a=4 \mathrm{~m} / \mathrm{s}^{2}$
mass $=50 \mathrm{~kg}$
Net Force =

$a=-3 \mathrm{~m} / \mathrm{s}^{2}$
mass $=100 \mathrm{~kg}$
Net Force $=-300 \mathrm{~N}$

$$
F=100,5\left(-3 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

$=-300 \mathrm{~N}$
$39-42$. A 100 kg ice skater and a 200 kg ice skater are standing next to one another. One of them pushes the other, causing them both to slide in opposite directions.
39. Who moves faster after they push away? 100 kg

42. If the 100 kg skater accelerates at a rate of $-4 \mathrm{~m} / \mathrm{s}^{2}$
 (to the left), how fast will the 200 kg skater accelerate?

$$
2 m / s^{2}
$$

43-44. Two cars collide head on.
One has a mass of 2000 kg , and the other has a mass of 1000 kg . When they collide, they stick together.

43. When they collide, which car's velocity changes more?

$$
10001
$$

44. Explain why.
has why.

A 0.15 kg mousetrap-powered car is wound up and held motionless at a starting line. When the car is released, its mousetrap "motor" pushes it for the firs 3 seconds. During that time, the car travels 12 meters. After the car's motor stops pushing, the car continues to "coast" for another 8 seconds.
45. What is the car's average velocity while the motor is pushing?

What is the change in velocity during the car's acceleration period?
What is the car's acceleration while the motor is pushing? $2.67 \mathrm{~m} / \mathrm{s}$
What net force is acting on the car while the motor is pushing?
What is the change in velocity during the car's deceleration period? $-8 \mathrm{c} / \mathrm{s}$ What is the car's acceleration during the car's deceleration period? $-/ \mathrm{m} / \mathrm{s}^{2}$ What net force is acting on the car during the car's deceleration period? What force of friction is acting on the car? What force is provided by the car's motor? $-15 N$ 0.55 N
54. A car's engine is pushing it forward with a force of 400 N . The car has a mass of 500 kg , and it is moving at a constant velocity. What total force of friction (including air, axles, etc) is acting against the car?

Bonus. If that same car had an acceleration of $0.1 \mathrm{~m} / \mathrm{s}^{2}$, what would the force of friction have to be?

45. $\bar{T}=\frac{d}{t}=\frac{12 \mathrm{~m}}{35} 64 \mathrm{~m} / \mathrm{s}$
46. Final $V=4 \mathrm{~m} 1 \mathrm{~s}(2)=8 \mathrm{~m} / \mathrm{s}$

$\Delta v=8 \mathrm{~m} / \mathrm{s}$
47. $a=\frac{\Delta v}{\Delta t}=\frac{8 \mathrm{~m} / \mathrm{s}}{3 \mathrm{~s}}-2.6 \mathrm{~mm} / \mathrm{ss}$

48. F=ma

$$
F=0.15 / \mathrm{s}\left(2.67 \mathrm{~m} / \mathrm{s}^{2}\right)=0.4 \mathrm{~N}
$$

49. Make this negative $=-8 \mathrm{~m} / \mathrm{s}$

$$
50 \cdot a=\frac{\Delta V}{\Delta t}=\frac{-8 \mathrm{~m} / \mathrm{s}^{2}}{8 \mathrm{~s}}=-1 \mathrm{~m} / \mathrm{s}^{2}
$$

51. $F=0.15 \mathrm{ks}\left(-12 / \mathrm{s}^{2}\right)=-0.15 \mathrm{~N}$
52.

53.

