A Find Everything Review Problem:

A 0.2 kg object is launched by a constant pushing force that slides it 1 m in a straight line along the top of a surface. The force, which acts parallel to the surface, accelerates the object from rest and acts only during the time that the object is sliding. After 1 m of sliding, the object, which has reached a speed of $14 \mathrm{~m} / \mathrm{s}$, passes off of the edge of the surface and freefalls to the ground (at a position of $y=0 m$) over a time of 4 seconds. During that time, the object drops a distance of 60 m , vertically and ends up at an X position of -12 m . The coefficient of friction between the object and the surface on which it slides is 0.4 . Find everything.

Specifically...

First, for the free-falling interval, find:

Second, for the sliding interval, find the following (**Note that I chose to use the symbol S for position on the surface. The surface is tilted, and I did not want the final position to be confused with X_{0}, above. You can change it to X if you want, but make sure that you don't confuse it with the X in the free-fall portion of the problem.):

$\theta=$	
$S_{0}=$	$\Sigma F=$
$S=$	$W=$
$\Delta S=$	$W_{1}=$
$\Delta t=$	$W_{11}=$
$V_{0}=$	$F_{N}=$
$V=$	$F_{F C}=$
$V=$	$F_{p u 3 h}=$

Formulas:

$$
\begin{aligned}
& \bar{V}=\frac{V+V_{0}}{2} \quad \bar{v}=\frac{\Delta x}{\Delta t} \quad V=V_{0}+a t \quad \text { Range }=\frac{V_{0}^{2} \sin 2 \theta}{g} \\
& a=\frac{\Delta V}{\Delta t} \quad \Delta x=V_{0} t+1 / 2 a t^{2} \quad V^{2}=V_{0}^{2}+2 a \Delta x \\
& \sum F=m a \quad F_{r r}=\mu F_{N} \quad w=m g \\
& \sum F_{c}=\frac{m v^{2}}{r} \quad a_{c}=\frac{V^{2}}{r} \\
& F_{g}=G \frac{m, m_{2}}{r^{2}} \quad \frac{T_{A}^{2}}{T_{B}^{2}}=\frac{r_{A}^{3}}{r_{3}^{3}}
\end{aligned}
$$

