Physics 200 (Stapleton) Name: Practice Test: Chapter 19-20 Waves and Sound

I. Matching (Select a possible SI unit for each wave parameter).

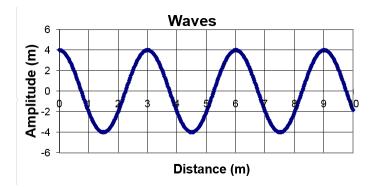
1. period	A. seconds
2. angular frequency	B. meters per second
3. amplitude	C. radians per second
4. wavelength x frequency	D. meters
5. frequency	E. Hertz

- 6. wavelength
- 7. speed of sound

	ple Choice (Ch Which sound h					•	on.)		
		tuning fork	•				[t is th	e same for both	
9. Which sound has the largest wavelength in air at 0.0 °C?									
	A. 220 Hz	tuning fork	В.	440 Hz †	runing	<i>C</i> . :	Et is th	e same for both	
10. Which sound has the largest frequency in air at 0.0 °C?									
	A. 220 Hz	tuning fork	В.	440 Hz †	runing	С. 1	[t is th	e same for both	
11.	As the temper	rature of the	e air dec	reases, t	he sp	eed of so	und		
	A. increa	ses	B. de	creases	·	<i>C</i> . :	stays t	he same	
12.	How many bea sounded simu		eard wl	nen two to	uning	forks of	512 Hz	and 508 Hz are	
	A. 1 Hz	B. 2 Hz	С.	4 Hz	D.	510 Hz	E.	1020 Hz	
13.	How many way	velengths will the fundame			e with	one close	ed whe	n you have	
	resonance ur	me fundame		1/-					

- 14. When shaking a string at one end that is attached to a post at the other end with just the right frequency to form a standing wave, the parts of the string that have maximum movement are called
 - A. fundamentals B. harmonics C. nodes D. antinodes
- 15. Transverse waves have a disturbance that is
 - A. in the same direction as the motion of the wave.
 - B. perpendicular to the direction of motion of the wave.
 - C. counterclockwise to the direction of the wave.
 - D. clockwise to the direction of the wave.
- 16. Sound waves are an example of a longitudinal wave.A. TrueB. FalseC. Unable to determine
- 17. Water waves are an example of a longitudinal wave.A. TrueB. FalseC. Unable to determine
- 18. When two waves are added together, you can get
 - A. constructive interference.
 - B. destructive interference.
 - C. standing waves.
 - D. All of the above.
- 19. A sound source moving away from you (compared to the same sound source at rest) will have
 - A. a higher pitch
 - B. a lower speed of sound
 - C. a lower frequency
 - D. a smaller wavelength
 - E. the same frequency
- 20. As the frequency of a tone increases,
 - A. the speed of sound increases.
 - B. the speed of sound decreases.
 - C. the frequency decreases.
 - D. the wavelength increases.
 - E. the wavelength decreases.

III. Problems:


- 1. At 35.0 °C, how much time will elapse between the firing of a gun and return of its echo from a cliff that is 2.60 km away?
- 2. Find the length of an organ pipe closed at one end that produces a fundamental frequency of 262 Hz (i.e. middle C) when the air temperature is 24.0°C.
- 3. A military sea mine is detonated at the surface of the water and the sound of the blast travels both through the air and the water. A Navy Seal swims right on the surface 1.60 km away from the blast. The sound travels through the sea water at 1540 m/s. The air temperature is 20.0 °C. How much sooner will the Navy Seal hear the blast through the water than he does through the air?

4. Calculate the speed of sound on a day when a 963 Hz frequency has a wavelength of 0.351 m.

- 5. What is the wavelength of a water wave that has a frequency of 0.200 Hz and a speed of 3.00 m/s?
- 6. The human range for hearing is commonly given as 20 to 20,000 Hz (though there is considerable variation between individuals, especially at high frequencies). At 22.0 °C, what is the wavelength range for human hearing?

7. An ambulance approaches a pedestrian standing on the side of a hot desert road at 108 km/hr. If the ambulance's siren produces a steady tone of 675 Hz, what frequency will the observer hear? The air temperature is 42.0 °C.

- 8. Given v = 90.0 m/s, find (2 points each)
 - **Α**. λ
 - B.f
 - С. Т
 - D. A

Equations:

$$f = \frac{1}{T} \qquad v = \lambda f \qquad v = d/t$$

$$V_{\text{sound in air}} = (331.4 + 0.6T_{C})\text{m/s} \qquad V_{\text{sound in air}} = \left(331.1 * \sqrt{1 + \frac{T_{C}}{273.15}}\right) m/s$$

$$f_{o} = f_{s} \frac{v \pm v_{o}}{v \pm v_{s}}$$

$$v_{\text{source}} = v_{\text{sound}} \left(\frac{2\frac{\Delta Pitch}{12} - 1}{2\frac{\Delta Pitch}{12} + 1}\right)$$