Name:	Keu		amicS
		Practice - 10.2 Kinemat	Dynam (CS)

1. A spinning fishing reel has an initial angular velocity is ω_0 = 220 rad/s. If the fisherman applies a brake to the spinning reel, achieving an angular acceleration of -300 rad/s², how long does it take the reel to come to a stop?

$$\omega_0 = 220 \frac{\text{rad}}{5}$$
 $\omega_f = \omega_0 + 2$
 $\omega_0 = 300 \frac{\text{rad}}{5}$ $\omega_0 = 220$
 $\omega_0 = 300 \frac{\text{rad}}{5}$ $\omega_0 = 220$

$$f = ?$$
 $\int \frac{1}{5^2} \int \frac{1}{5^2} = \frac{1}{300} = \frac{220 \frac{100}{5}}{300 \frac{100}{5^2}}$
 $0.5 = 0$

2. Large freight trains accelerate very slowly. Suppose one such train accelerates from rest, giving its 0.350-m-radius wheels an angular acceleration of 0.250 rad/s².

A. After the wheels have made 200 revolutions (assume no slippage), how far has the train moved down the track?

$$W_0 = 0$$

 $V = 0.350 \text{ m}$
 $S = 0.250 \frac{\text{rad}}{5^2}$

B. After the wheels have made 200 revolutions (assume no slippage), what are the final angular velocity of the wheels and the linear velocity of the train?

Name:	Ken	
- Numor	Practice - 10.3 Dynamics of Rotational Motion: Rotational Inertia	(contid

3. Calculate the rotational inertia of a solid sphere of mass M = 5.0 kg and a radius of R = 0.25 m.

$$T = \frac{2}{5}mR^2 = \frac{2}{5}(5.0kg)(0.25m)^2 = [0.13 kgm^2]$$

Calculate the rotational inertia of a solid cylinder of mass M = 2.0 kg and a radius of R = 0.075 m about its central axis.

$$T = \frac{1}{2}MR^2 = \frac{1}{2}(2.0\text{kg})(0.075\text{m})^2 = \left[5.6 \times 10 \text{ kg/m}^2\right]$$

Suppose you exert a force of 180 N tangential to a 0.280-m-radius 75.0-kg grindstone (a solid disk).

A. What torque is exerted?

$$\gamma = rF = (0.280 \text{ m})(180 \text{ N}) = [50.4 \text{ N·m}]$$

B. What is the angular acceleration assuming negligible opposing friction?

$$Y = T = \frac{\gamma}{1} = \frac{\gamma}{1} = \frac{50.40 \text{ N} \cdot \text{m}}{17.17 \text{ rad}} = \frac{17.17 \text{ rad}}{17.14 \text{ rad}}$$

C. What is the angular acceleration if there is an opposing frictional force of

C. What is the angular acceleration if there is an opposing frictional force of 20.0 N exerted 1.50 cm from the axis?

$$\alpha = \frac{7_{NET}}{I} = \frac{50.40 - (1.50 \times 10^{2} \text{m})(20.0 \text{N})}{\frac{1}{2}(75.0 \text{kg})(0.280 \text{ m})^{2}} = \frac{17.0 \text{ rad}}{5^{2}}$$
17.04 rad