the it 4-Minute Drill
If your eing the the Chapter 9-10 me more last your fee Chapter 9-10 form need to Starreikens. Technically older incorrect, but older postence = Or incorrect, but older
Distance a point on a body moves as the body rotates through an angle θ $\Delta X = \Theta C$
Velocity of a point on a body as the body rotates with angular speed ω $V=\omega r$
Acceleration of a point on a body as the body's rotation rate increases $\alpha=lpha r$
Angular velocity in terms of θ $\omega = \frac{\Delta \Theta}{\Delta E}$
Angular acceleration in terms of ω $\alpha = \frac{\Delta \omega}{\Delta t}$
One of the rotational kinematic equations ($\Delta\theta =$) $\Delta\theta = \omega_0 t + 1/2 \propto t^2$
Another rotational kinematic equation (w=) $W = W_o + \alpha \mathcal{E}$
One more rotational kinematic equation ($w^2 = w^2 + Z \propto \Delta \Theta$
Rotational kinetic energy formula $KE_{n+} = 2 I \omega^2$
Total kinetic energy of a rolling body $KE_{tot} = 12mv^2 + 12Tw^2$
Rotational inertia of discrete particle of mass m at a distance r from the axis $\mathcal{I}=mr$
\star Rotational inertia of a cylinder with the axis through the center of the flat face $T = \frac{1}{2}m$
KRotational inertia of a solid sphere with the axis through the center $I = 2/mr^2$
Torque in terms of force applied at a given distance from the rotational axis $\frac{1}{2}$
Torque (Newton's 2nd Law for rotation) $Z = I \alpha$
Angular momentum $L = Iw$
* Another expression for angular momentum $L = mr^2/\sqrt{(mr^2)^2}$
Conservation of angular momentum
Li=La
I'wi= Irwi