Physics 200	
Newton's Laws (1	L-D) Test Version 1

	1	
Name:	rey	

	1	1			
Mu	Itin		(h	0	CO.
iviu	ILIP	1		U	LC.

- 1. A 20-ton truck collides with a 1500-lb car and causes a lot of damage to the car. A lot of damage is done on the
- a. the force on the truck is greater than the force on the car.
- (b) the force on the truck is equal to the force on the car.
- c. the force on the truck is smaller than the force on the car.
- d. the truck did not slow down during the collision.
- 2. The acceleration due to gravity is lower on the Moon than on Earth. Which of the following is true about the mass and weight of an astronaut on the Moon's surface, compared to Earth?
- a. Mass is less, weight is same.

(b) Mass is same, weight is less.

c. Both mass and weight are less.

- d. Both mass and weight are the same.
- 3. A stone is thrown straight up. At the top of its path, the net force acting on it is
- a. greater than its weight.

b. greater than zero, but less than its weight.

c. instantaneously equal to zero.

(d) equal to its weight.

4. A 20-N weight and a 5.0-N weight are dropped simultaneously from the same height. Ignore air resistance. Compare their accelerations.

- a. The 20 N weight accelerates faster because it is heavier.
- b. The 20 N weight accelerates faster because it has more inertia.
- c. The 5.0 N weight accelerates faster because it has a smaller mass.
- ਰੀ,They both accelerate at the same rate because they have the same weight to mass ratio.
 - 5. If the sum of all forces on an object is zero (i.e. $F_{Net} = 0$), then the object
 - A. must have a velocity v = 0.

(B.) must have an acceleration a = 0.

C. must remain in the same position. D. must be accelerating with a = g.

6. A 1,000 kg car and a 1 gram feather fall to the Earth at their respective terminal velocities. Which object has the greatest acceleration at terminal velocity?

- a. the feather
- b. the car
- (c.) Neither, both have 0 acceleration.
- d. It cannot be determined because there is not enough information given.

7. A 1,000 kg car and a 1 gram feather fall to the earth at their respective terminal velocities. Which object has the largest force of air resistance acting on it?

- a. the feather (b) the car
- c. Neither, both have the same amount of air resistance acting on them.
- d. It cannot be determined because there is not enough information given.

8. An object of mass m is hanging by a string from the ceiling of an elevator. The elevator is moving up at constant velocity. What is the tension in the string?

- a. less than mg
- (b)exactly mg
- c. greater than mg

9. A sailboat is using an unstretchable rope to tow a small rowboat. The rowboat has a mass of 100kg and the sailboat has a mass of 1,000kg. The sailboat is accelerating forward at a rate of 1m/s², causing the rowboat to accelerate along with it. Which of the following is true?

a. The rope exerts a stronger force on the rowboat than it does on the sailboat.

b. The rope exerts a stronger force on the sailboat than it does on the rowboat.

c.) The rope exerts equal forces on the two boats.

d. The rope does not exert a force on either boat.

Short Answer:

2Fx

1. A 100 kg human is standing on a barge in the absence of air resistance. The barge is accelerating to our right at a rate of 2m/s² and the person is accelerating along with it. Draw all of the individual forces that are acting on the human. Use arrows to show the direction of each force. Label each arrow with an appropriate name of the force, the correct magnitude of the force, and the correct units.

 $\begin{aligned}
& = ma = bok_3(2m/s^2) \\
& = 200N
\end{aligned}$ $\begin{aligned}
& = F_{K-1} = 980N \\
& = 980N
\end{aligned}$

2. This pendulum consists of a heavy sphere and a string of negligible mass. The pendulum is suspended from a ceiling in a vacuum at the surface of the Earth. Sketch a graph of the X dimension net force acting on the pendulum vs time as the pendulum swings over and back once. You do not have to label the axes with specific magnitudes.

Net Force (X-dimension) vs. Time

Botton Point Botton

Max Loftware force

Rightmost

3. A 10kg watermelon is dropped out of an airplane without a parachute. Use the timetable to fill out the empty cells in the second data table below. Don't forget correct <u>signs and units</u>. The mass and weight columns will not be graded, but you might find them to be helpful.

Time	Event
(0s)	Watermelon is dropped out of plane
20s	Watermelon reaches terminal velocity of -100m/s
500s	Watermelon hits the Earth

Watermelon Watermelon **Net Force** Force of Drag on Melon Melon Time Mass [not Weight [not acting on melon Acceleration Velocity melon graded] graded] 0s -80 m/s **15**s 90N

4. a. Consider a golf ball that is being dropped by an astronaut who is standing on the Moon. Gravity causes the ball the fall to the Moon's surface. Describe the action and reaction forces that are involved as the ball is falling toward the moon's surface.

80s

Action: Moon pulls ball toward moon (down)

Reaction: Ball pulls moon toward ball ("up")

Problems:

- A student weighs 700N on Earth. 1.
 - a. What is his mass?

tw=mg/ 700N=m(9.8~/s2) Im = 71.4kg/

b. How much does he weigh on Mars, where the acceleration due to gravity is -0.38g?

0.38 (9.8m/s2) = 3.72m/s2 = 9mess w=mgylac, w= 71.4kg (3.72m/s2)=/266N/

A sled has a mass of 40kg. 2.

a. In a frictionless environment, how much force is required to accelerate the sled horizontally at a rate of

5F=ma (5F= 40kg (2m/s=)=/80N

b. If the coefficient of friction between the sled and the ground is μ_k =0.2, calculate the force of friction while $||f_{F}| = 0.2 \left(\frac{40k_{5}}{9.8n/5}\right) \int w = \sqrt{k_{5}}$ $= u mg = \sqrt{78.4N + 1efterard}$ $d's \mu_{k} = 0.2, \text{ what applied force in }$ the sled is sliding horizontally to the right? sled's μ_k =0.2, what applied force is required to accelerate the sled, horizontally, at a rate of 2m/s²? Fr The Forsh EF-80N EF= Fpush-FF = Fpush-78.4N Fpnsh - 28.4N=80N /Fpnsh = 158.4N

d. If μ_k =0.2, what applied force is required to move the sled, horizontally, at a constant velocity?

SF=Ma SF= Sum of EF= Fpush - FF

Fpash -78.4N=0 Fpush = 78.40V

	m.	≨F.		V	20
3.		ed with an old stump. As the was 30,000N. The bullet pen		Total Control of the	
12	a. Calculate the bullet	's acceleration during its imp	0.012kg (1 >D
	V V		500,000 m/s		AX
Tu	b. How fast was the bu	allet moving just before it hit $0 = \sqrt{2}$	the stump? + 2(-2.5×12)	in/s= (0,12m	
b		Vo=77	A COLUMN TO A STATE OF THE PROPERTY OF THE PRO		
4.		ON is standing on a bathroor de and direction of the eleva		The constitution	ids 400N.
1 21	F=ma F=sum of forces f=mg	9 FN = 400M	w=mg=>	700N = (30 700N = m (4 m = 71.4kg	·8n/s²)
			SF=ma=>	-300N = 71.4 -Ja = - 4.6	1kg (a)
5.	woman is about to lift railing. In her eager st	public pier just caught a nice the fish a vertical distance o ate, she wants to lift the fish ne fishing line is 100N, how f	spottail bass. The fish is 8m, from the water's sur as fast as possible. If the	now at rest (motionless rface to the top of the p bass' mass is is 5kg, an	s), and the pier
	a. What is fastest poss SF=man SF=Sum Force W=mg	sible acceleration that she can $1 - 100N$ 1 - 5 = 100N 1 = 5 = 100N	in impart to the fish (with $SF = Skg(a)$ SF = 100N - 4 SIN = 100	out breaking the line)? $9N=51N$ $5kg(a)$ $=10.2n/s^2$	Vo
_	b. At that acceleration	, how long will it take her to	lift the fish 8 meters?		
L	8.m=0	+ 1/2 (10, Zn/5²)	4		
	t -	11,255			

b. Find tension
$$T_1$$
 $2F = 5kg (0.784 m/s^2)$
 $5F = 7, -49N = 3.92N$
 $7, -49N = 3.92N$
 $7, = 52.9 N$

c. Find tension T_2
 $5F = 10kg (-0.784 m/s^2) = -7.84N$
 $5F = 7, -98N = -7.84N$
 $7, -98N = -7.84N$
 $7, -98N = -7.84N$