Formulas [These will be optional on the test . You get +1% for not using formulas.]:

$$\overline{v} = \frac{v_0 + v_1}{2}$$

$$\overline{v} = \frac{\Delta x}{\Delta t}$$

$$a = \frac{\Delta v}{\Delta t}$$

$$\overline{v} = \frac{v_0 + v}{2}$$
 $\overline{v} = \frac{\Delta x}{\Delta t}$ $a = \frac{\Delta v}{\Delta t}$ $speed = \frac{distance}{time}$ $\Delta = final - initial$

$$\Delta = final - initial$$

Multiple Choice, Matching, and Short Answer

Circle all of the quantities that are scalars. 1. Force Displacement Acceleration

Distance

Position

Speed Velocity

- 2. This tells us whether position increases and decreases during such so long, and by he would. **Position** Displacement
- This 3. Position Velocity Speed Acceleration
- 4. This tells us how the velocity of an object changes during each second. Acceleration **Position** Displacement Velocity Speed

#5-9 Answer Choices: A. Drag

- B. Tension
- C. Weight
- D. Normal Force
- E. Friction
- Resistance between two surfaces sliding across one another 5.
- ABCDE. The pulling force in a rope, cable, or chain
- 7. A B C DE A force exerted perpendicularly outward by a surface
- ABODE STEEDER FORCE OF gradity
- Resistance acting on an object moving through a fluid
- Average Velocity: 10.

- Δt

- 11. Displacement:
- $v = \overline{v}$

- 12. Final Velocity:

 v_0

- 13. Position:
- v_0

- Δt

 Δt

Fill in the blanks...

- 14. 1kg = 2.2 pounds
- 15. $1 \, \text{m/s} = 2.24 \, \text{mph}$
- 1 foot = 0.305 meters 16.
- 17. 1N = 0.225 pounds

17-20. The top row of graphs below plot position vs. time. The middle row shows velocity vs time, and bottom row shows acceleration vs time.

- 17. Which velocity graph represents the same motion as position graph B?
- 18. Which **position graph** represents the same motion as **velocity graph G**? A B C D E
- 19. Which position graph represents the same motion as acceleration graph K?

 A B C D E
- 20. Which acceleration graph represents the same motion as position graph A?

21. A car travels rightward at the speed limit. The driver sees a stop sign and stops the car. The car waits for its turn at the intersection and then resumes traveling rightward at the speed limit. Then the car stops at another stop light, and that is where this story ends. Sketch a graph of the car's acceleration vs. time for this entire "story"

acceleration vs. time for this entire "story." (eSuning Styping Stypin

21.	Astronauts orbiting the Earth feel weightless, but they're not. Explain why this is not true
	Earth's gravity is acting on them, keeping
	Earth's gravity is acting on them, keeping them in whit. We Ight = force of Gavity
22.	Describe what something could be doing if it has negative acceleration and positive velocity.
	Moving Eightward Slowing down
	orupward
23.	Describe what something could be doing if it has negative acceleration and zero velocity.
	Not moving, but beginning to letter.
	in and down ward / like
	a bull at the top or its flight
Proble	ems: For possible partial credit, clearly show useful starting formulas and intermediate answers.
1.	A car travels 8m to the right (positive direction). Then it drives in reverse, traveling leftward for 16m . Assuming that the entire round trip takes 8 seconds
	a. What is the car's average velocity for the entire trip?
ム	(=-8m Verdshere (8ntoleft) & BM
-	16m
\ \ \	St 85 = -/m/s
	b. What is the car's average speed for the entire trip?
/	Speed = distance = 24m (3m/s)
	- Ditimes 8s

2. Wile E. Coyote drops an anvil in the absence of air resistance. After falling for a short time, the anvil's velocity is -49m/s. The anvil continues to fall for 8 more seconds until it hits the ground (somehow
missing the road runner and landing on Wile E. Coyote). During this 8 second time period
a. What is the anvil's change in velocity?
a. What is the anvil's change in velocity? $ \begin{vmatrix} a = \Delta V \\ \Delta t \end{vmatrix} - 9.8 \text{ m/s}^2 = \Delta V \\ 8s $ $ \begin{vmatrix} a = \Delta V \\ At \end{vmatrix} = 3.4 \text{ m/s} $ $ \begin{vmatrix} a = -9.8 \text{ m/s}^2 \\ a = -9.8 \text{ m/s}^2 \end{vmatrix} $
DES 85 (a = -9.8-/52)
b. What is the anvil's final velocity?
1 N=V-Vol -78.4~/s= V- (-4am/s)
V= -127.4~/5
c. What is the anvil's average velocity?
V= VotV /= -49-/s + (-127.4-/s) (-88.2-/s
d. How far does the anvil fall?
V= 04/ -88.2-/5= Ay =706m
- NE(706-
Dis bunco
3 Rear acceptation at a constant rate for a time of 5 seconds over a displacement of +50m. By the end
In this the parameter of the carried

The diagram on the right shows the only two forces acting on a student as she jumps (we're ignoring air resistance). She starts her jump from rest, and her starts her s to a holy hear holy hear in a time of 0.12 seconds, Her mass is 50kg. a. What is her acceleration?

b. What is the magnitude of the net force acting on the student?

= 50kg (41.7~/s2)=/2,025M

c. We haven't learned about Newton's 3rd Law yet, but the reason that the ground is pushing up is that the student is pushing down with an equal force. What is the magnitude of the student's push (same as the ground's push)?

groundspush = 2,580.