9	Physics 100 Unit 2: Electricity Notes, part 2: Textbook Chapter 18.1, 18.3 Conductors & Insulators, Electric Field, Etc.
	1. <u>Candudors</u> allow electrons to easily move through them. List some examples. Metals, Water (salty) 2. <u>insulator</u> do not allow electrons to move through them. List some examples. reabser, glass, wood, plastic
	3. Protons <u>Cannot</u> (can cannot) flow through solid conductors.
	4. Ground : a large, neutral source of charge (like the Earth). The ground can serve two purposes
	"The ground" can Serve as a place for extra electrons to so suffrom a negative, "The ground" can be a source charged object of electrons that can flow into a positive object, making it neutral. 5. What happens to an object when the object is "grounded?" It's charge becomes neutral.
	6. What other objects, other than the Earth, could be used to ground something? A big conductor (metal car, pole, etc.)

7. What is an electric field?	
Aplace where an electric	
A place where an electric charge is pushed or pulled.	
8. What creates an electric field?	
8. What creates an electric field? Another electric charge (or many electric charge) nearby	
electric charge nearby	
9. Electric Field Hockey (pHet Simulation)	
1. Find and run the simulation.	
2. Click the "Field" and "Trace" buttons.	
3. Try to win levels 1 and 2.4. What happens when you turn off "puck is positive," so that the puck becomes	
negative?	
10. Interesting (and important) facts:	, es
Fact #1: Charges "leak away" from surfaces of charged conductors	
that are	<i>ٺ</i>
pointy	
This explains why lightning rods are added to buildings:	
The rods disprevent charges	
from building up so there	
is no lightning strike.	
From building up, so there This also explains why the surface of a Van de Graaff generator is	
not pointy	
Fact #2: The electric field inside a conductor is <u>Zero</u> . This is why	
one of the safest places to be during a lightning storm is	
in a metal eage (for example, a car)	
IN a METAL CASE (FOR ENAMPLE, a CON)	