Physics 100	Name: Answers Al/2
Notes: Momentum and Impulse	Nume.
A.	1
Definition of Momentum: Inertia in m	
symbol: P Why? Latin -spetere velocity	(Asmove)
Formula: P=mve mass	PP
Three ways to arrange the momentum formula:	P=mv m=V v=m
Momentum Units: kg m	
Practice Using the Momentum Formula:	
1. A 3kg goliath frog has a velocity of 2m/s. What's its more $p = mv = 3 \frac{1}{5} (2 - \frac{1}{5}) = 6$	
2. A 50kg pig has a momentum of 150kgm/s. What's the $V = \frac{150 k_3 n/s}{50 k_5} = 3 m$	big's velocity?
3. A farmer is chasing the pig. The farmer's velocity is 4m, farmer's mass? $Ra = \frac{P}{M} = \frac{200 k_5 - k_5}{4 - k_5} = \frac{50}{4}$	
Is momentum evector quantity or a scalar quantity? Why? You can have m	
for can have but	Ferent
Net Momentum: The Vector Sum	directions. entums in a system.
Law of Conservation of Momentum:	
The net momentum in	a system
must remain c	onstant.

Momentum p.1

Momentum p.3

6. A 2kg block of wood moving at a velocity of 5m/s slows to a stop over a time of seconds. What net force brought the wood to a stop?

7. A 1,000kg car is rolling toward you at a velocity of 2m/s. In order to slow the car to a velocity of 1m/s by pushing against the car for 10 seconds, how hard will you have to push?

AP=Pr-Pi= -1,000kgm

1kg

Momentum and Impulse Practice
Formulas: $p = mv$ $Ft = \Delta p$ $Ft = m\Delta v$ $\Delta p = \int_{rad}^{\infty} - \int_{rad}^{\infty} dr$
Short Answer:
1. Define momentum Inertia in notion; something's
tendency to keep moving
2. State the law of conservation of momentum.
The wet momentum in any system remains
3. What are the units for momentum? Hamb
3. What are the units for momentum? Kg m/s
4. What is the symbol for momentum?
5. Define impulse.
A force applied during a time interval Inquilse = Ft
5. What are the units for impulse?
No or kgm/s
Problems:
6. A 7kg object has a velocity of -4m/s. What is its momentum?
p=mv=7kg(-4~/s)=-28kg~/s
p=m0=113(11/3)=200193
7. 0.65kg basketball is moving with a velocity of 3m/s. It collides with a stationary 0.05kg tennis ball,
transferring half of its momentum to the tennis ball.
a. What is the basketball's velocity after the collision?
Party = 0.65kg(3n/s) = 1.95kgm/s 1.9550 (0.975kgm/s)
b. What is the tennis ball's velocity after the collision?
P=mv A -P-0.975ks-15
$p = mv$ $v = \frac{P}{m} = \frac{0.975 ks^{-1/5}}{0.05 ks} = 19.5 m/s$
8. An impulse of 6kgm/s is applied to a mouse. What is the mouse's change in momentum?
Et = AP = bkam/ = AP

Physics 100

9,	A 1,000kg car accelerates from 20m/s to 50m/s.	\bigcirc
	a. What is the car's Δρ? Δρ = Pfinal -Pinifial 1000 (50-15) = 30,000	
	1000kg (50m/s) - 1000g 20-15) - 50,000	575
EIT	b. If this acceleration takes place over a 30 second time period, what force is being applied? $F = \Delta P \qquad F = \Delta P \qquad = 30,000 ks^{-1/3} = (10000)$	
10.	Starting from rest, a 200kg motorcycle accelerates over a distance of 90m in a time of 4 seconds, reaching a	
	velocity of 40m/s. Immediately after that, the motorcycle crashes into a series of cardboard boxes and	
	comes to rest in a time of 3 seconds.	
	a. What is the motorcycle's Δp during its acceleration period?	
	DP=P-P== 200kg (40-16)-0=8,000 kgm/s	
	b. What is the motorcycle's Δp during its deceleration period?	
	Dp=P+-Pi=0-2006(40-16)=-8,000+5-15	\geq
	c. What average net force caused the motorcycle's acceleration?	
Ft=	AP FIF F= 4 = 8000 kgm/s (2000N)	
	What average net force caused the motorcycle's deceleration?	\circ
\circ	F= of = -8000kg-15 -2,670N	
11.	Car A has a velocity of -10m/s and a mass of 500kg. Car B has a mass of 800kg and a velocity of 6m/s. If the	
Do 11 6	two cars collide and stick together, what is their shared velocity after the collision?	
together!	act persone were the	
•	(-10-15) (5006) + (20045) (6-16) = 1300/5(V) => -5000/5-1/5+480/	P. 15-15
12.	Suppose a 3kg steel sphere is moving with a velocity of 4m/s. The steel sphere strikes a second stationary sphere with a mass of 2kg and a velocity of 2m/s. After the collision, the 3kg sphere has a velocity of 3m/s.	= /
	1	1300kg(v)
	a. What is the net momentum of this system before the collision?	1300K/V
	system before the collision? 3kg (4-1/s.) + 2kg (2-1/s) = 12ks + 4ks -1/s = (16ks -1/s)	2.154 x
	36 37 36 79	(73)
	b. What is the net momentum of this system after the collision?	
	(16 kgm/s)	
	c. What is the velocity of the 2kg steel sphere, after the collision?	\circ
A	$ \begin{array}{l} bk_{5} - l_{5} = 3k_{5}(3-l_{5}) + 2k_{5}(\nu) \\ bk_{5} - l_{5} = 9k_{5} - l_{5} + 2k_{5}(\nu) \\ 7k_{5} - l_{5} = 2k_{5}(\nu) \rightarrow \nu = \frac{7k_{5} - l_{5}}{2k_{5}} = 3.5 - l_{5} \end{array} $	1.
MIU	16kg-1s=9kg-1s +2kg(V) 7kg-1s (3-)	
V= Pm	7/3-1/5 = 26 (V) -> V= 2/5 -5 (5.5 m/s)	

momenta-	warmen ha
Physics 100 Momentum and Impulse Practice Out	Answes
Formulas: $p = mv$ $F_0 = \Delta p$ $F_0 = m\Delta v$ $F_0 = m\Delta v$	chanse
1. Impulse is equal to the change of A. Velocity B. Mass C. Force	Valority
E. Force x Velocity	"Ling"
2. An object's momentum is always equal to A. its average acceleration C. its velocity multiplied by the applied force E. Work done on the object E. its mass multiplied by its velocity multiplied by its vel	object
3. The change in an object's momentum is equal to A. its average acceleration B. the force applied to the object D. the impulse imparted to the E. Work done on the object E. its mass multiplied by its velocity	object
4. The correct units for momentum are: a. kgm/s b. Nm/s c. kgm/s ² d. Nm/s ²	
5-7 Three eggs of equal mass are thrown with the same horizontal velocity at three difficientical in every aspect except for their hardness. The first egg splatters against a hostop. The second egg hits a soft wall and comes to a stop without splattering. The toff of a springy wall.	nard wall and comes to a
5. Compared to the first egg (hard wall), the second egg (soft wall) experiences. a. Greater force and the same impulse c. Greater force and greater impulse e. Same force and impulse	ulse
6. Which egg experiences the greatest change in motification? A. First egg B. Second egg C. Third egg D. None of the	m ξ
 Now consider the walls in number 4. Which wall is most likely to be knocked a. Hard wall b. Soft wall c. Springy wal d. None of the 	,
8. A 1kg ball is dropped to the ground. It hits the ground with a velocity of -6m/s and be velocity of +4m/s. What impulse did the ball experience? A2kgm/s B. 4 kgm/s C6kgm/s E.	ounces back up with a 24kgm/s $P=M$
AFE= AP Po= alks(-6-15)=	64,1/2
$\Delta F \in \Delta P$ $P_0 = a k_0 (-6 - k_0) = \frac{1}{4} $ $\Rightarrow F \in A = a k_0 (4m/5) = \frac{1}{4} $ $= \frac{1}{4} \cdot 10 - 10 = 10 \cdot 10 \cdot 10 = 10 =$	5-/5)
=(b) 10-15=10k, 15 2 = Ps-Po = 4ks-1/s	-(-6ksm/s)

P=mv=	1200 /3 (30-/5))=36000kg-/
-------	-----------------	-------------

9. A 1,200-kilogram car traveling at 30 meters per second hits a huge pile of cardboard boxes and is brought to rest

i	n 6 seconds. Wh	at is the magnitude o	f the average force ac	ting on the car to brin	g it to rest?	
	A. 6×10^{2} N	B. $6 \times 10^3 \text{N}$	C. $6 \times 10^4 \text{ N}$	D. 6×10^{5} N	E. $6 \times 10^6 \text{N}$	
46		٨	14 2	6 Dookenk		
Ft=		(A) F=		6,000ksm/s	=(6,000N)	
	1 /2	1	t	65	-(0,000)	
	21	10				
9						
17 = 10)					e child and the long board	are
13					long board, the long board imps off (before she hits the	
1/= -40		egn-ignore air resist		Velocity Wileleste Ju	1.1	
	R	Con	ib; the . De 5	13 47	1	(Kkyk)
	1	0,0	ect.	(\$-935-50)	p=-1255-15 -6	75019
1/= -	5~15 0	-20kz		1	=-80kg~/5	
V	. Y		no entimise a	00	80.7	- 70 - 35 °S
		-5KS	i u the applic		PEMV	elac Principal
~		/ /	- The application	ers heldes may regards made griffed people coapeling the course for the co	A 1	r=m
ρ	1 = 25%	(-5~/s)	10	ex = -125	1 1 1	-803
1 110	×-1.	25kg-1/6				2015
11.	A bocce ball-	was rolling with a vet	ocity of 4m/s. The ba	ll collided with a traffic	cone, which applied a forc	e of 5-42
	-5N to the bo	occe ball. The force la	asted for 0.1 seconds,	and the mass of the b	occe ball was 0.8kg.	
				II:	_	
		27 TV TIL	the ball before the co	\ /	FIG	
	Long	misc = Ft	= -5N(0	·/s)= (-0".	5 Ns	
	b. What wa	s the ball's momentu	ım before the collisio	1?		
		mv = 0.81		/ 1		
	,,		(' /			
	c. What wa	is the ball's momenti	ım after the collision?		0 0 0 -11	
	EX	= DP =>	-0.5Ns	=AP	0= Po-0,5N3	,
	, ,	-/	r: ~	/ //	-275-4-0	,5 Kgm/s
	d. What wa	s the ball's velocity a	fter the collision?		-3109/5	
	λ.	P 27k	mk /		(= 2.7kgm/s	(2)
p=mv	/P) V=	= =	7 3,38	(m/s)		-
1	AV	m 0.0				
/12.	I lise the conc	ents of momentum.	impulse, force, and ti	ne to explain how airb	pags decrease injuries durin	g a
12.					6 \	1
	11:0	bags len	other in	each time,	OF DOFF	()
	711	, ,	·	` .1	Id!	
	there	by redu	cing The	impact	J. Ingari	/c
			,		, <u>,</u>	
	1000	e neces	sary n	stop a		\boldsymbol{a}
	-	- e foly	10. 0.401	ich inou	Isp (FE) to	
	This	Spinord	المان			
	′	NI	the aric	ier's mo	ner tun	
	d	ecrease	1	200	Ise (Fé) to ner tun	
	2(70 6			