Physics 100
Momentum and Impulse Practice

Formulas: $\quad p=m v \quad F t=\Delta p \quad F t=m \Delta v$

Short Answer:

1. Define momentum
2. State the law of conservation of momentum.
3. What are the units for momentum?
4. What is the symbol for momentum?
5. Define impulse.
6. What are the units for impulse?

Problems:

6. $\quad \mathrm{A} 7 \mathrm{~kg}$ object has a velocity of $-4 \mathrm{~m} / \mathrm{s}$. What is its momentum?
7. 0.65 kg basketball is moving with a velocity of $3 \mathrm{~m} / \mathrm{s}$. It collides with a stationary 0.05 kg tennis ball, transferring half of its momentum to the tennis ball.
a. What is the basketball's velocity after the collision?
b. What is the tennis ball's velocity after the collision?
8. An impulse of $6 \mathrm{kgm} / \mathrm{s}$ is applied to a mouse. What is the mouse's change in momentum?
9. $A 1,000 \mathrm{~kg}$ car accelerates from $20 \mathrm{~m} / \mathrm{s}$ to $50 \mathrm{~m} / \mathrm{s}$.
a. What is the car's Δp ?
b. If this acceleration takes place over a 30 second time period, what force is being applied?
10. Starting from rest, a 200kg motorcycle accelerates over a distance of 90 m in a time of 4 seconds, reaching a velocity of $40 \mathrm{~m} / \mathrm{s}$. Immediately after that, the motorcycle crashes into a series of cardboard boxes and comes to rest in a time of 3 seconds.
a. What is the motorcycle's $\Delta \mathrm{p}$ during its acceleration period?
b. What is the motorcycle's Δp during its deceleration period?
c. What average net force caused the motorcycle's acceleration?
i. What average net force caused the motorcycle's deceleration?
11. Car A has a velocity of $-10 \mathrm{~m} / \mathrm{s}$ and a mass of 500 kg . Car B has a mass of 800 kg and a velocity of $6 \mathrm{~m} / \mathrm{s}$. If the two cars collide and stick together, what is their shared velocity after the collision?
12. Suppose a 3 kg steel sphere is moving with a velocity of $4 \mathrm{~m} / \mathrm{s}$. The steel sphere strikes a second stationary sphere with a mass of 2 kg and a velocity of $2 \mathrm{~m} / \mathrm{s}$. After the collision, the 3 kg sphere has a velocity of $3 \mathrm{~m} / \mathrm{s}$.
a. What is the net momentum of this system before the collision?
b. What is the net momentum of this system after the collision?
c. What is the velocity of the 2 kg steel sphere, after the collision?
