ESS 100	(Stapl	eton)
Star Life	times	Part 1

	1/	
Name:	rey	

	ota. I	1
	1.	What is the general name that includes gamma rays, x-rays,
		ultraviolet, visible light, infrared, microwaves, and radio waves?
	FI	shorter wavelength higher frequency higher energy lower energy
	2.	a. Draw and label two waves, one
		with a longer wavelength, and
		one with a shorter wavelength. Shorter
		Waveley Longer
		b. Which waves have the most energy? [Hint: think of the waves as ropes that are being shaken.]
		Shorter waves have more energy
	3.	List the colors of the visible spectrum from longest wavelength to shortest wavelength.
	(red rangellow Green the Individed Shortest
20	200	2 1 18 9 9 9 9
\$ and	4.	Rank these star colors from hottest to coolest. Orange, Red, Yellow, Blue, White
		Blue White Yellow Orange Redet Coolest
404	5.	a. Which stars are the hottest, larger stars or smaller stars?
		b. Why? They have more gravity and pressure
		c. What color are they? Blue
	6.	Stars get their energy from a process called 100 learning. Most of the time,
		during this process, hydrogen atoms are squeezed together to make
		helium atoms. In this process, the new atoms that are created
		have <u>less</u> (more of less) mass than the atoms that fused.
	3	Energy is created from this
		amount of energy that is produced can be calculated using the formula
		In this formula, E = energy, m = mass, and C = speed of light
	7.	a. When elements fuse in a star, lighter elements fuse to become heavier elements. Where do these heavier elements go? Sink to the senter
		b. Why? Zeranse dense things sink

8.	a. Bigger stars can fuse more "fuels" than our sun. Why?
	They have more pressure
	b. What is the heaviest element that can be created by fusion in a very large star?
1	Iron
9.	a. At some point, our sun will run out of hydrogen that it can fuse. When this happens, the
	next fuel that will fuse is helium
	b. At this point, the sun will expand, and its color will shift to because the surface will be cooler than before. At this point, the sun will be called a
	red giant 3 After all puclear fusion seasos in our sun it will (averand or shrink)
10.	a. After all nuclear fusion ceases in our sun, it will (expand or shrink).
	b. This change in size will cause the sun's temperature to <u>heat</u> .
	c. This change in temperature will cause its color to change from to
	white
	a. At this point, the sun will be called a white dwarf
11.	The early universe was about 75% hydrogen and 25% helium. Where did the rest of the elements come from?
	a. Where did the lighter elements come from (up to the mass of iron)?
	Nuclear fusion in Stars
	b. Where did the heavier elements (heavier than iron) originate?
	Superovae
12.	"One solar mass" is the mass of our Sun
13.	In order for a star to die as a supernova, the star's mass needs to be at least Solar masses.
14.	Just before a star dies as a supernova, what element can be found at the star's core?
15.	After a supernova, the material left over from a very large star can have three different fates:
	1) Recycled into a new solar system/star
	2) If the leftover material is between 1 and 3 solar masses, it can become a:
	neutron star - Very dense; rapidly spinning
	3) If the leftover material is over 3 solar masses, it can become a:
	black hole - Infinitely Dense