ESS 100	(Stapl	eton)
Star Life	times	Part 1

1.	What is the general name that includes gamma rays, x-rays, ultraviolet, visible light, infrared, microwaves, and radio waves? Shorter wavelength Shorter wavelength	
Electi	omagnetic Waves higher frequency higher energy	
2.	a. Draw and label two waves, one with a longer wavelength, and one with a shorter wavelength.	
	Longer	-
	b. Which waves have the most energy? [Hint: think of the waves as ropes that are being shaken.] Shorter > more energy	
3.	List the colors of the visible spectrum from longest wavelength to shortest wavelength.	
	Longest -> ROY Greene BIViolet	
4.	Rank these star colors from hottest to coolest. Orange, Red, Yellow, Blue, White	,
	Hottest >> Blue, White, Vellow, Orange, Ked	
5.	a. Which stars are the hottest, later stars or smaller stars?	
	b. Why? I massive sters c. What color are they? and pressure	
	Blue	
6.	Stars get their energy from a process called <u>Nuclear fusion</u> . Most of the time,	
	during this process, hydrogen atoms are squeezed together to make	
/	nelium atoms. In this process, the new atoms that are created	
	have <u>less</u> (more or less) mass than the atoms that fused.	
	Energy is created from this (lost or gained) mass being turned to energy. The	
	amount of energy that is produced can be calculated using the formula	
	In this formula, E = energy, m = mass, and c = speed of light	7
7.	a. When elements fuse in a star, lighter elements fuse to become heavier elements. Where do these heavier elements go?	
	b. Why? Denser things sink.	

8.	a. Bigger stars can fuse more "fuels" than our sun. Why? More gravity and pressure	
	b. What is the heaviest element that can be created by fusion in a very large star?	.e
	In	
9.	a. At some point, our sun will run out of hydrogen that it can fuse. When this happens, the	
	next fuel that will fuse is helian	
	b. At this point, the sun will expand, and its color will shift to because the surface will be cooler than before. At this point, the sun will be called a	
	red giant	
10.	a. After all nuclear fusion ceases in our sun, it will (expand or shrink).	
	b. This change in size will cause the sun's temperature to	
	c. This change in temperature will cause its color to change from to	
	white.	
	a. At this point, the sun will be called a white dwarf.	
11.	The early universe was about 75% hydrogen and 25% helium. Where did the rest of the elements come from?	9
	a. Where did the lighter elements come from (up to the mass of iron)? Nuclear fusion in Stars	
	b. Where did the heavier elements (heavier than iron) originate?	
	Supernova Explosions	
12.	"One solar mass" is the mass of our sun	
13.	In order for a star to die as a supernova, the star's mass needs to be at least $8-12$ solar masses	
14.	Just before a star dies as a supernova, what element can be found at the star's core?	
15.	After a supernova, the material left over from a very large star can have three different fates:	
	1) Some matter is scattered and incorporated into new nebulae like of	u/S
	2) If the leftover material is between 1 and 3 solar masses, it can become a: Newtron	
	3) If the leftover material is over 3 solar masses, it can become a: black hole	